Respuesta :

Given that

We have some logarithmic values. And we have to find a log value.

Explanation -

The values that are given are

[tex]\begin{gathered} \log_{10}2=0.3010 \\ and \\ \log_{10}36=1.5563 \end{gathered}[/tex]

And we have to find the value of

[tex]\log_{10}36^3=?[/tex]

So the formula we will use here will be

[tex]\log_{10}a^n=n\times\log_{10}a[/tex]

Therefore on using the formula we have

[tex]\begin{gathered} \log_{10}36^3=3\times\log_{10}36 \\ \\ substituting\text{ the value of }\log_{10}36\text{ we have} \\ \\ \log_{10}36^3=3\times1.5563 \\ \log_{10}36^3=4.6689 \end{gathered}[/tex]

So the answer is 4.6689

Final answer -

Hence the final answer is 4.6689