Answer:
42 degrees
Explanation:
The diagram representation of the problem is a right triangle where:
• The side length opposite the angle θ = 50ft
,• The length of the hypotenuse = 75ft
From trigonometric ratios:
[tex]\sin \theta=\frac{\text{Opposite}}{Hypotenuse}[/tex]Therefore:
[tex]\begin{gathered} \sin \theta=\frac{\text{5}0}{75} \\ \theta=\arcsin (\frac{50}{75}) \\ \theta=41.81\degree \\ \theta\approx42\degree \end{gathered}[/tex]The angle that the rope makes with ground is 42 degrees ( to the nearest angle).