Respuesta :

Answer:

42 degrees

Explanation:

The diagram representation of the problem is a right triangle where:

• The side length opposite the angle θ = 50ft

,

• The length of the hypotenuse = 75ft

From trigonometric ratios:

[tex]\sin \theta=\frac{\text{Opposite}}{Hypotenuse}[/tex]

Therefore:

[tex]\begin{gathered} \sin \theta=\frac{\text{5}0}{75} \\ \theta=\arcsin (\frac{50}{75}) \\ \theta=41.81\degree \\ \theta\approx42\degree \end{gathered}[/tex]

The angle that the rope makes with ground is 42 degrees ( to the nearest angle).