Respuesta :

Given the following Quadratic equation:

[tex]y=-x^2+10x-16[/tex]

1. You can find the vertex as following:

-Find the x-coordinate of the vertex with this expression:

[tex]\frac{-b}{2a}[/tex]

In this case:

[tex]\begin{gathered} a=-1 \\ b=10 \end{gathered}[/tex]

Then, substituting values, you get:

[tex]\frac{-10}{2(-1)}=5[/tex]

- Substitute this value into the Quadratic equation and evaluate, in order to find the y-coordinate of the vertex. This is:

[tex]\begin{gathered} y=-(5)^2+10(5)-16 \\ y=-25+50-16 \\ y=9 \end{gathered}[/tex]

Then, the vertex is:

[tex](5,9)[/tex]

2. Now let's find the roots:

- Substitute the following value of "y" into the equation:

[tex]y=0[/tex]

Then:

[tex]0=-x^2+10x-16[/tex]

- In order to make the leading coefficient positive, multiply both sides of the equation by -1:

[tex]\begin{gathered} (-1)(0)=(-x^2+10x-16)(-1) \\ 0=x^2-10x+16 \end{gathered}[/tex]

- Factor the equation. Find two numbers whose sum is -10 and whose product is 16. These would be -8 and -2. Then:

[tex](x-8)(x-2)=0[/tex]

- The roots are:

[tex]\begin{gathered} x_1=8 \\ x_2=2 \end{gathered}[/tex]

3. Now let's find five points to plot them in the coordinate plane. Give five different values to "x" and evaluate in order to find the corresponding value of "y". Then:

- When

[tex]x=1[/tex]

You get:

[tex]y=-(1)^2+10(1)-16=-7[/tex]

The point is:

[tex](1,-7)[/tex]

- When

[tex]x=3[/tex]

You get:

[tex]y=-(3)^2+10(3)-16=5[/tex]

The point is:

[tex](3,5)[/tex]

- When:

[tex]x=4[/tex]

You get:

[tex]y=-(4)^2+10(4)-16=8[/tex]

The point is:

[tex](4,8)[/tex]

- When:

[tex]x=6[/tex][tex]y=-(6)^2+10(6)-16=8[/tex]

The point is:

[tex](6,8)[/tex]

- When:

[tex]x=7[/tex]

You get:

[tex]y=-(7)^2+10(7)-16=5[/tex]

The point is:

[tex](7,5)[/tex]

Finally, you get the following graph of the equation:

Ver imagen SailorS312421