Function given is
[tex]f(x)=8x+7[/tex]To find the inverse, we follow the steps:
1. change f(x) to y
2. Interchange x and y
3. Solve for new "y"
So,
we now have:
y = 8x + 7
Interchanging:
x = 8y + 7
Solving for y:
[tex]\begin{gathered} x=8y+7 \\ x-7=8y \\ y=\frac{x-7}{8} \\ y=\frac{1}{8}x-\frac{7}{8} \end{gathered}[/tex]The inverse function (y) is:
[tex]y=\frac{1}{8}x-\frac{7}{8}[/tex]