Option D
[tex]\frac{6x^2+2x}{2x^2+1}[/tex]Explanations:The given expression is:
[tex]\frac{6+\frac{2}{x}}{2+\frac{1}{x^2}}[/tex]Simplify the numerator:
[tex]\begin{gathered} 6\text{ + }\frac{2}{x} \\ \frac{6x+2}{x} \end{gathered}[/tex]Simplify the denominator:
[tex]\begin{gathered} 2+\frac{1}{x^2} \\ \frac{2x^2+1}{x^2} \end{gathered}[/tex]The complete expression becomes:
[tex]\frac{\frac{6x+2}{x}}{\frac{2x^2+1}{x^2}}[/tex][tex]\begin{gathered} \frac{6x+2}{x}\div\frac{2x^2+1}{x^2} \\ \frac{6x+2}{x}\text{ }\times\frac{x^2}{2x^2+1} \\ \frac{x(6x+2)}{2x^2+1} \\ \frac{6x^2+2x}{2x^2+1} \end{gathered}[/tex]