Respuesta :
We will construct a tree diagram with the information given:
• 24% of the dogs are young, so 76% are seniors.
,• Of the young dogs, 35% are poodles.
,• Of the senior dogs, 15% are poodles.
We can draw the diagram as:
a) We have to calculate the probability that a given dog is a young poodle.
We can calculate it as:
[tex]\begin{gathered} P(Y\cap P)=P(P|Y)\cdot P(Y) \\ P(Y\cap P)=0.35\cdot0.24 \\ P(Y\cap P)=0.084 \end{gathered}[/tex]b) We can calculate the probability that any given dog is not a puddle as:
[tex]\begin{gathered} P(\text{not P})=1-P(P) \\ P(\text{not P})=1-\lbrack P(P|Y)\cdot P(P)+P(P|S)\cdot P(S)\rbrack \\ P(\text{not P})=1-\lbrack0.35\cdot0.24+0.15\cdot0.76\rbrack \\ P(\text{not P})=1-(0.084+0.114) \\ P(\text{not P})=1-0.198 \\ P(\text{not P})=0.802 \end{gathered}[/tex]c) If there are 130 dogs, we can use the proportion of adult poodles to calculate how many there are:
[tex]P(S\cap P)=P(P|S)\cdot P(S)=0.15\cdot0.76=0.114[/tex]We can multiply this proportion by 130 and get the number of expected senior poodles:
[tex]X=N\cdot P(S\cap P)=130\cdot0.114=14.82\approx15[/tex]d) Now, we have to calculate the probability that any given dog is a young dog, given that is a poodle. We can do this as:
[tex]\begin{gathered} P(Y|P)=\frac{P(Y\cap P)}{P(P)} \\ P(Y|P)=\frac{P(P|Y)\cdot P(Y)}{P(P|Y)\cdot P(Y)+P(P|S)\cdot P(S)} \\ P(Y|P)=\frac{0.35\cdot0.24}{0.35\cdot0.24+0.15\cdot0.76} \\ P(Y|P)=\frac{0.084}{0.084+0.114} \\ P(Y|P)=\frac{0.084}{0.198} \\ P(Y|P)\approx0.424 \end{gathered}[/tex]Answer:
a) 0.084
b) 0.802
c) 15
d) 0.424