1) Let's assume "s" is equal to 1. As a positive number.
2) This way we can apply the Law of Cosines to find one leg
[tex]\begin{gathered} d^2=b^2+c^2-2bc\cos (118) \\ d=\sqrt[]{(45)^2+(48)^2-2\cdot(45)(48)\cdot\cos (118)} \\ d=79.73 \end{gathered}[/tex]Having the lengths of all legs, we can make use of the Law of the Sines
[tex]undefined[/tex]