Using the Substitution method of the simultaneous equation to resolve the system of equations given below
[tex]\begin{gathered} 10x+4y=-6\ldots\ldots\ldots.1 \\ y=2x-6\ldots\ldots\ldots2 \end{gathered}[/tex]Substitute y = 2x - 6 into equation 1 and evaluate for x
[tex]10x+4\mleft(2x-6\mright)=-6[/tex]Simplify
[tex]\begin{gathered} 10x+8x-24=-6 \\ \text{Isolate for x} \\ 18x=-6+24 \\ \frac{18x}{18}=\frac{18}{18} \\ \therefore x=1 \end{gathered}[/tex]Substitute x = 1 into equation 2 and evaluate for y
[tex]\begin{gathered} y=2\times\: 1-6=2-6=-4 \\ \therefore y=-4 \end{gathered}[/tex]Hence, the solutions to the system of equations are
[tex]x=1,\: y=-4[/tex]