Answer:
4.2 inches
Explanation:
First, we need to calculate the length of AB. It can be calculated using the trigonometric function tangent because
[tex]\begin{gathered} \tan(45)=\frac{\text{ Opposite side}}{Adjacent\text{ side}} \\ \\ \tan(45)=\frac{AB}{10} \end{gathered}[/tex]Because 45 = 30 + 15. Now, we can solve for AB as follows
[tex]\begin{gathered} 10\cdot\tan(45)=AB \\ 10\cdot1=AB \\ 10=AB \end{gathered}[/tex]Using the same trigonometric function, we can calculate the length of DB, so
[tex]\begin{gathered} \tan(30)=\frac{\text{ Opposite side}}{\text{ Adjacent side}} \\ \\ \tan(30)=\frac{BD}{10} \\ \\ 10\cdot\tan(30)=BD \\ 10\cdot0.5774=BD \\ 5.77=BD \end{gathered}[/tex]Now, the length of AD is equal to
AD = AB - BD
AD = 10 - 5.77
AD = 4.23
Therefore, the answer is 4.2 inches