Given:
There are given that the expression:
[tex]\frac{2x+3}{4}=\frac{x+7}{3}[/tex]Explanation:
To find the value for x, first, we need to perform cross multiplication:
So,
From the given expression;
[tex]\begin{gathered} \frac{2x+3}{4}=\frac{x+7}{3} \\ 3(2x+3)=4(x+7)_{} \end{gathered}[/tex]Then,
[tex]\begin{gathered} 3(2x+3)=4(x+7)_{} \\ 6x+9=4x+28 \\ 6x+9-4x-28=0 \end{gathered}[/tex]Then,
[tex]\begin{gathered} 6x+9-4x-28=0 \\ 2x-19=0 \\ 2x=19 \end{gathered}[/tex]Then,
Divide by 2 on both sides of the above equation:
So,
[tex]\begin{gathered} 2x=19 \\ \frac{2x}{2}=\frac{19}{2} \\ x=\frac{19}{2} \\ x=9.5 \end{gathered}[/tex]Final answer:
Hence, the value of x is 9.5