Respuesta :

Answer:

76.3

Explanation:

The area of a segment is given by the formula

[tex]segment\; area=(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]

The segment is the red region.

Therefore, the area of the shaded region given in the picture of the question is

Area of the circle - Area of the segment.

Since

[tex]Circle\; Area=\pi r^2[/tex]

and

[tex]segment\; area=(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]

The area of the shaded region is

[tex]Area\; Shaded=\pi r^2-(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]

Now, in our case,

[tex]\begin{gathered} \theta=60^o \\ r=5 \end{gathered}[/tex]

Therefore,

[tex]Area\; Shaded=\pi\cdot5^2-(\frac{\pi(60)}{360}-\frac{\sin60}{2})\times5^2[/tex]

Evalauting the right-hand side gives

[tex]Area\; Shaded=76.27516[/tex]

Rounded to the nearest tenth, the above is

[tex]\boxed{Area\; Shaded=76.3}[/tex]

which is our answer!

Ver imagen MihirU26206