Answer:
76.3
Explanation:
The area of a segment is given by the formula
[tex]segment\; area=(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]The segment is the red region.
Therefore, the area of the shaded region given in the picture of the question is
Area of the circle - Area of the segment.
Since
[tex]Circle\; Area=\pi r^2[/tex]and
[tex]segment\; area=(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]The area of the shaded region is
[tex]Area\; Shaded=\pi r^2-(\frac{\pi\theta}{360}-\frac{\sin\theta}{2})\times r^2[/tex]Now, in our case,
[tex]\begin{gathered} \theta=60^o \\ r=5 \end{gathered}[/tex]Therefore,
[tex]Area\; Shaded=\pi\cdot5^2-(\frac{\pi(60)}{360}-\frac{\sin60}{2})\times5^2[/tex]Evalauting the right-hand side gives
[tex]Area\; Shaded=76.27516[/tex]Rounded to the nearest tenth, the above is
[tex]\boxed{Area\; Shaded=76.3}[/tex]which is our answer!