Given:
There are given that the coordinates of the rectangle are:
[tex]\begin{gathered} A:(1,7) \\ B:(8,7) \\ C:(8,-3) \\ D:(1,-3) \end{gathered}[/tex]Explanation:
To find the value of the perimeter of the rectangle, first, we need to find the distance between all sides by using the distance formula:
So,
First find the distance for side AB:
[tex]\begin{gathered} AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ AB=\sqrt{(8-1)^2+(7-7)^2} \\ AB=\sqrt{(7)^2+0} \\ AB=7 \end{gathered}[/tex]Then,
For side BC:
[tex]\begin{gathered} BC=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ BC=\sqrt{(8-8)^2+(-3-7)^2} \\ BC=\sqrt{100} \\ BC=10 \end{gathered}[/tex]Then,
For the side CD:
[tex]\begin{gathered} CD=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ CD=\sqrt{(1-8)^2+(-3+3)^2} \\ CD=\sqrt{(-7)^2+0} \\ CD=7 \end{gathered}[/tex]And,
For the side DA:
[tex]\begin{gathered} DA=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\ DA=\sqrt{(1-1)^2+(-3-7)^2} \\ DA=\sqrt{(100)} \\ DA=10 \end{gathered}[/tex]Then,
From the formula of perimeter of rectangle;
[tex]P=AB+BC+CD+DA[/tex]Then,
[tex]\begin{gathered} \begin{equation*} P=AB+BC+CD+DA \end{equation*} \\ P=7+10+7+10 \\ P=14+20 \\ P=34units \end{gathered}[/tex]Final answer:
Hence, the correct option is D.