Answer:
[tex]\begin{gathered} \frac{\sin \theta}{\cos \theta} \\ \\ \frac{1}{\cot \theta} \end{gathered}[/tex]Explanation:
Let's consider the below right triangle;
From the above, we can see that sin0/cos0 is equivalent to tan0;
[tex]\begin{gathered} \sin \theta=\frac{a}{b} \\ \cos \theta=\frac{c}{b} \\ \tan \theta=\frac{a}{c} \\ \frac{\sin \theta}{\cos \theta}=\frac{\frac{a}{b}}{\frac{c}{b}}=\frac{a}{b}\times\frac{b}{c}=\frac{a}{c} \end{gathered}[/tex]We also know that;
[tex]\begin{gathered} cot\theta=\frac{1}{\tan \theta} \\ \tan \theta=\frac{1}{\cot \theta} \end{gathered}[/tex]