Given data:
Mass of puck A:
[tex]m_A=0.25\text{ kg}[/tex]Mass of puck B:
[tex]m_B=0.35\text{ kg}[/tex]Initial velocity of puck B:
[tex]u_B=0[/tex]as the puck B is initally at rest.
Final velocity of puck A:
[tex]v_A=-0.12\text{ m/s}[/tex]Here, negative sign indicates that the velocity of the puck A is towards left.
Final velocity of puck B:
[tex]v_B=0.65\text{ m/s}[/tex]According to the conservation momentum, the momentum before and after collision remains constant that is,
[tex]m_Au_A+m_Bu_B=m_Av_A+m_Bv_B[/tex]Here, uA is the velocity of puck A before collision.
Rearranging the above equation in order to get an expression uA,
[tex]u_A=\frac{m_Av_A+m_Bv_B-m_Bu_B}{m_A}[/tex]Susbtituting all known values,
[tex]\begin{gathered} u_A=\frac{(0.25\text{ kg})\times(-0.12\text{ m/s})+(0.35\text{ kg})\times(0.65\text{ m/s})-(0.35\operatorname{kg})\times(0)}{(0.25\text{ kg})} \\ =0.79\text{ m/s} \end{gathered}[/tex]Therefore, the velocity of puck A before collision is 0.79 m/s.