Respuesta :
last table
Explanation:For a table to represent linear function, it must be in the form:
[tex]\begin{gathered} y\text{ = mx + b} \\ m\text{ = slope, b = y-intercept} \end{gathered}[/tex]a) slope for this table using any two points: (0, 5) and (5, -15)
slope = (-15 - 5)/(5- 0) = -20/5
slope = -4
b is the value of y when x = 0
b = 5
[tex]\begin{gathered} y\text{ }=\text{ -4x + 5} \\ \text{For each of the values of x we insert in the equation, we will get the value of y on the table.} \\ \\ \text{Hence, it is a linear function} \end{gathered}[/tex]b) slope from (5, 6) and (10, 16)
slope = (16 - 6)/(10 - 5) = 10/5
slope = 2
There is no value of x = 0 on the table, we calculate for b using the point (5, 6)
y = mx + b
6 = 2(5) + b
b = -4
[tex]\begin{gathered} \text{y = 2x - 6} \\ \text{For each of the values of x we insert in the equation, we will get the value of y on the table.} \\ \\ \text{Hence, it is a linear function} \end{gathered}[/tex]c) using point (0, -5) and (5, 15)
slope = (15 - (-5))/(5 - 0) = 20/5
slope = 4
when x = 0, y = -5
b = -5
[tex]\begin{gathered} y\text{ = 4x - 5} \\ \text{For each of the values of x we insert in the equation, we will get the value of y on the table.} \\ \\ \text{Hence, it is a linear function} \end{gathered}[/tex]d) using point (0, 5) and (5, 30)
slope = (30 - 5)/(5 - 0) = 25/5
slope = 5
when x = 0 , y = 5
y -intercept = 5
[tex]\begin{gathered} y\text{ = 5x + 5} \\ \text{when x = 5} \\ y\text{ = 5(5) + 5 = 30} \\ when\text{ x = 10} \\ y\text{ = 5(10) + 5 = 55} \\ \text{This is not the same y value in the table} \\ \text{when x = }15 \\ \text{y = 5(15) + 5 = 80} \\ \text{This is not the same y value in the table} \end{gathered}[/tex]From the above, the last table is not a linear function