Respuesta :

Consider the system of equations as,

[tex]\begin{gathered} \frac{1}{12}x-\frac{1}{12}y=13 \\ \frac{1}{3}x-\frac{1}{6}y=20 \end{gathered}[/tex]

Multiply the equation 1 by 12 and the equation 2 by 6,

[tex]\begin{gathered} x-y=156 \\ 2x-y=120 \end{gathered}[/tex]

Solve the system of equations using Elimination Method.

Subtract both the equations,

[tex]\begin{gathered} (x-y)-(2x-y)=156-120 \\ x-y-2x+y=36 \\ -x=36 \\ x=-36 \end{gathered}[/tex]

Substitute this value in equation 1,

[tex]\begin{gathered} -36-y=156 \\ -y=156+36 \\ -y=192 \\ y=-192 \end{gathered}[/tex]

Thus, the solution of the given system of equations is (x,y) = (- 36, - 192).

Therefore, option (b) is the correct choice.