Respuesta :

Since these numbers are odds, they are of the form:

[tex]2x+1[/tex]

Let's take this as the first.

The second one must be:

[tex]2x+3[/tex]

And the last one:

[tex]2x+5[/tex]

The square of the first one increased the product of the other two is 28:

[tex](2x+1)^2+(2x+3)(2x+5)=28[/tex]

If we take k=2x+1, we get:

[tex]k^2+(k+2)(k+4)=28[/tex][tex]k^2+k^2+6k+8=28[/tex][tex]2k^2+6k+8=28[/tex][tex]2k^2+6k+8-28=0[/tex][tex]2k^2+6k-20=0[/tex][tex]k^2+3k-10=0[/tex][tex](k+5)(k-2)=0[/tex]

K could be -5 or 2, but because has to be a odd number k=-5.

Lets check:

[tex](-5)^2+(-3)(-1)[/tex][tex]25+3[/tex][tex]28[/tex]

The consecutive odd numbers are -5 , -3 and -1