Using the given information, we can set the following system of equations:
[tex]\begin{gathered} 4r_1+4r_2=1016, \\ r_2=r_1+10, \end{gathered}[/tex]where r₁, and r₂ are the rates of the trains.
Substituting the second equation in the first one, we get:
[tex]4r_1+4(r_1+10)=1016.[/tex]Solving for r₁, we get:
[tex]\begin{gathered} 4r_1+4r_1+40=1016, \\ 8r_1+40=1016, \\ 8r_1=1016-40, \\ 8r_1=976, \\ r_1=\frac{976}{8}, \\ r_1=122. \end{gathered}[/tex]Therefore:
[tex]r_2=122+10=132.[/tex]