Solve the triangle A = 2 B = 9 C =8

Answer:
[tex]\begin{gathered} A=\text{ 12}\degree \\ B=\text{ 114}\degree \\ C=54\degree \end{gathered}[/tex]Step-by-step explanation:
To calculate the angles of the given triangle, we can use the law of cosines:
[tex]\begin{gathered} \cos (C)=\frac{a^2+b^2-c^2}{2ab} \\ \cos (A)=\frac{b^2+c^2-a^2}{2bc} \\ \cos (B)=\frac{c^2+a^2-b^2}{2ca} \end{gathered}[/tex]Then, given the sides a=2, b=9, and c=8.
[tex]\begin{gathered} \cos (A)=\frac{9^2+8^2-2^2}{2\cdot9\cdot8} \\ \cos (A)=\frac{141}{144} \\ A=\cos ^{-1}(\frac{141}{144}) \\ A=11.7 \\ \text{ Rounding to the nearest degree:} \\ A=12º \end{gathered}[/tex]For B:
[tex]\begin{gathered} \cos (B)=\frac{8^2+2^2-9^2}{2\cdot8\cdot2} \\ \cos (B)=\frac{13}{32} \\ B=\cos ^{-1}(\frac{13}{32}) \\ B=113.9\degree \\ \text{Rounding:} \\ B=114\degree \end{gathered}[/tex][tex]\begin{gathered} \cos (C)=\frac{2^2+9^2-8^2}{2\cdot2\cdot9} \\ \cos (C)=\frac{21}{36} \\ C=\cos ^{-1}(\frac{21}{36}) \\ C=54.3 \\ \text{Rounding:} \\ C=\text{ 54}\degree \end{gathered}[/tex]