Pizza 1:
Area:
[tex]\begin{gathered} A_1=\pi r_1^2 \\ \\ A_1=\pi(16\text{ inc})^2=256\pi\text{ }inch^2 \end{gathered}[/tex]
Area of each slice:
[tex]A_{s1}=\frac{256\pi}{8}=32\pi\text{ }inch^2[/tex]
Pizza 2:
Area:
[tex]\begin{gathered} A_2=\pi r_2^2 \\ \\ A_2=\pi(14\text{ inc})^2=196\pi\text{ }inch^2 \end{gathered}[/tex]
Area of each slice:
[tex]A_{s2}=\frac{196\pi}{6}=32.67\pi\text{ }inch^2[/tex]
Pizza 3:
Area:
[tex]\begin{gathered} A_3=\pi r_3^2 \\ \\ A_3=\pi(12\text{ inch})^2=144\pi\text{ }inch^2 \end{gathered}[/tex]
Area of each slice:
[tex]A_{s3}=\frac{144\pi}{4}=36\pi\text{ }inch^2[/tex]
The smallest slice is from pizza 1, then the slice from pizza 2, and the largest is from pizza 3.