Respuesta :

The system of equations given:

[tex]\begin{gathered} 8x-4y=-8 \\ 16x-5y=-28 \end{gathered}[/tex]

Multiplying the first equation by "- 2", we have:

[tex]\begin{gathered} -2\times(8x-4y=-8) \\ 16x-5y=-28 \\ --------------- \\ -16x+8y=16 \\ 16x-5y=-28 \\ --------------- \end{gathered}[/tex]

Now, we can add the last 2 equations:

[tex]\begin{gathered} -16x+8y=16 \\ 16x-5y=-28 \\ ---------- \\ 3y=-12 \\ y=-\frac{12}{3} \\ y=-4 \end{gathered}[/tex]

We can now plug this value into the first equation and solve for "x". The steps are shown below:

[tex]\begin{gathered} 8x-4y=-8 \\ 8x-4(-4)=-8 \\ 8x+16=-8 \\ 8x=-8-16 \\ 8x=-24 \\ x=-\frac{24}{8} \\ x=-3 \end{gathered}[/tex]

The solution set of the system is:

[tex](-3,-4)[/tex]

RELAXING NOICE
Relax