Respuesta :
Given,
The mass of the car moving east, m=1420 kg
The mass of the car moving south, M=1880 kg
The velocity of the car moving east, u₁=17.0 m/s
The velocity of the car moving south, u₂=-15.0 m/s
Here we assume that the eastward direction is the positive x-direction and the southward direction is the negative y-direction.
From the law of conservation of momentum, the momentum is conserved in both directions simultaneously and independently.
Considering the conservation of momentum in the x-direction,
[tex]mu_1=(m_{}+M)v_x[/tex]Where v_x is the x-component of the final velocity of the two cars.
On substituting the known values,
[tex]\begin{gathered} 1420\times17.0=(1420+1880)v_x \\ v_x=\frac{1420\times17.0}{(1420+1880)} \\ =7.32\text{ m/s} \end{gathered}[/tex]Considering the conservation of momentum in the y-direction,
[tex]Mu_2=(m+M_{})v_y[/tex]Where v_y is the y-component of the final velocity of the cars.
On substituting the known values,
[tex]\begin{gathered} _{}1880\times-15.0=(1420+1880)v_y \\ v_y=\frac{1880\times-15.0}{(1420+1880)} \\ =-8.55\text{ m/s} \end{gathered}[/tex]A.
The magnitude of the velocity of the cars tight after the collision is given by,
[tex]v=\sqrt[]{v^2_x+v^2_y}[/tex]On substituting the known values,
[tex]\begin{gathered} v=\sqrt[]{7.32^2+(-8.55)^2} \\ =11.26\text{ m/s} \end{gathered}[/tex]Thus the magnitude of the velocity of the cars right after the collision is 11.25 m/s
B.
The direction of the cars right after the collision is given by,
[tex]\theta=\tan ^{-1}(\frac{v_y}{v_x})[/tex]On substituting the known values,
[tex]\begin{gathered} \theta=\tan ^{-1}(\frac{-8.55}{7.32}) \\ =-49.4^{\circ} \end{gathered}[/tex]Thus the direction of the cars right after the collision is -49.4°. That is 49.4° south of the east.
C.
The total kinetic energy of the system is before the collision is
[tex]K_1=\frac{1}{2}mu^2_1+\frac{1}{2}Mu^2_2[/tex]On substituting the known values,
[tex]\begin{gathered} K_1=\frac{1}{2}\times1420\times17.0^2+\frac{1}{2}\times1880\times15.0^2 \\ =205.19\times10^3+211.5\times10^3 \\ =416.69\times10^3\text{ J} \end{gathered}[/tex]The kinetic energy of the system of two cars after the collision is,
[tex]\begin{gathered} K_2=\frac{1}{2}(m+M)v^2 \\ =\frac{1}{2}\times(1420+1880)11.26^2 \\ =209.2\times10^3\text{ J} \end{gathered}[/tex]Thus the kinetic energy lost during the collision is,
[tex]\Delta K_{}=K_1-K_2[/tex]On substituting the known values,
[tex]\begin{gathered} \Delta K=416.69\times10^3-209.2\times10^3 \\ =207.49\times10^3\text{ J} \\ \approx207.5\text{ kJ} \end{gathered}[/tex]Thus the total kinetic energy lost during the collision is 207.5 kJ
Otras preguntas
