Define the exponential function
[tex]A(t)=A_0e^{rt}[/tex]where A is the hourly wage.
Given that A(0) = 7.50 and A(10) = 12.22.
By using definition of A(t),
[tex]\begin{gathered} 7.50=A_0e^0 \\ A_0=7.50 \end{gathered}[/tex]Then
[tex]A(t)=7.5e^{rt}[/tex]Now, use A(10)=12.22.
[tex]\begin{gathered} 7.5e^{10r}=12.22 \\ e^{10r}=1.629 \end{gathered}[/tex]Take logarithm on both sides.
[tex]\begin{gathered} 10r=\ln (1.629) \\ =0.488 \\ r=0.0488 \end{gathered}[/tex]Substitute the value of r in A(t).
[tex]A(t)=7.5e^{0.0488t}[/tex]
Find the wage after 10 more years.
Take t = 20 and substitute into A(t).
[tex]\begin{gathered} A(20)=7.5e^{0.0488\cdot20} \\ =19.904 \end{gathered}[/tex]In 20 years, the daily wage will be $19.904.