Given the values of n and p to be;
[tex]\begin{gathered} n=10 \\ p=0.6 \end{gathered}[/tex]We can calculate the standard deviation using the formula below;
[tex]\sigma=\sqrt[]{n\cdot p\cdot(1-p)}[/tex]substituting the given values;
[tex]\begin{gathered} \sigma=\sqrt[]{10\cdot0.6\cdot(1-0.6)} \\ \sigma=\sqrt[]{2.4} \\ \sigma=1.55 \end{gathered}[/tex]Therefore, the standard deviation for the distribution is;
[tex]\sigma=1.55[/tex]