Respuesta :

Solution:

Given:

Account 2 details:

Assume a year is 365 days;

[tex]\begin{gathered} P=\text{ \$}8100 \\ t=3.4years \\ r=5.1\text{ \%}=\frac{5.1}{100}=0.051 \\ n=365days \end{gathered}[/tex]

Using the compound interest formula to get the amount;

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Hence, substituting the values;

[tex]\begin{gathered} A=8100(1+\frac{0.051}{365})^{365\times3.4} \\ A=8100(1+\frac{0.051}{365})^{1241} \\ A=9633.55 \end{gathered}[/tex]

Therefore, the balance in account 2 will be $9633.55

RELAXING NOICE
Relax