Given
v = 343 m/s
ac = 5g
ac = 5*9.8 m/s^2
ac = 49 m/s^2
where,
v: velocity
ac = centripetal aceleration
Procedure
We call the acceleration of an object moving in uniform circular motion—resulting from a net external force—the centripetal acceleration ac; centripetal means “toward the center” or “center seeking”.
Formula
[tex]\begin{gathered} a_c=\frac{v^2}{r} \\ r=\frac{v^2}{a_c} \\ r=\frac{(343m/s)^2}{49m/s^2} \\ r=2401\text{ m} \end{gathered}[/tex]The minimum radius not to exceed the centripetal acceleration is 2401 m.