Respuesta :
ANSWER
[tex]\begin{gathered} (a)13,046N \\ (b)14.5m\/s\text{ or }52.2km\/h \end{gathered}[/tex]EXPLANATION
Parameters given:
Mass of the car, m = 1800 kg
Radius of arc, r = 21.4 m
(a) First, let us make a free body sketch of the problem:
where N = force exerted by the road on the car
W = weight of the car
v = velocity of the car
First, let us convert the given velocity to meters per second:
[tex]\begin{gathered} v=26.6\cdot\frac{1000}{3600} \\ v=7.39m\/s \end{gathered}[/tex]The centripetal force acting on the car as it moves in the semi-circular arc is given by:
[tex]F=\frac{mv^2}{r}[/tex]The total forces acting on the car is:
[tex]N-W+F=0[/tex]This implies that:
[tex]\begin{gathered} N=W-F \\ N=mg-\frac{mv^2}{r} \\ N=(1800\cdot9.8)-\frac{1800\cdot7.39^2}{21.4}=17,640-4,593.54 \\ N=13,046N \end{gathered}[/tex]That is the force that the road exerts on the car.
(b) At the maximum speed, the car will start to lose contact with the road at N = 0:
[tex]\begin{gathered} \Rightarrow0=W-F \\ 0=mg-\frac{mv^2_m}{r} \\ \Rightarrow\frac{mv^2_m}{r}=mg \\ \Rightarrow v^2_m=gr \\ \Rightarrow v_m=\sqrt[]{gr} \end{gathered}[/tex]Substitute the values of g and r to solve for maximum speed, vm:
[tex]\begin{gathered} v_m=\sqrt[]{9.80\cdot21.4} \\ v_m=\sqrt[]{209.72} \\ v_m=14.5m\/s \end{gathered}[/tex]In km/h, that is:
[tex]\begin{gathered} 14.5\cdot\frac{3600}{1000} \\ 52.2km\/h \end{gathered}[/tex]That is the maximum speed that the car can have.

Otras preguntas
