Answer:
The vertex is at the point;
[tex](-2,5)[/tex]Explanation:
Given the function;
[tex]y=x^2+4x+9[/tex]Comparing to the quadratic equation;
[tex]y=ax^2+bx+c[/tex]The vertex is at;
[tex]x=\frac{-b}{2a}[/tex]For the given equation;
[tex]\begin{gathered} a=1 \\ b=4 \end{gathered}[/tex]substituting;
[tex]\begin{gathered} x=-\frac{b}{2a}=-\frac{4}{2(1)} \\ x=-2 \end{gathered}[/tex]The value of y at x=-2 is;
[tex]\begin{gathered} y=x^2+4x+9 \\ y=(-2)^2+4(-2)+9 \\ y=4-8+9 \\ y=5 \end{gathered}[/tex]Therefore, the vertex is at the point;
[tex](-2,5)[/tex]