EXPLANATION
[tex]\mathrm{A\: geometric\: sequence\: has\: a\: constant\: ratio\: }r\mathrm{\: and\: is\: defined\: by}\: a_n=a_1\cdot r^{n-1}[/tex]Compute the ratios of all the adjacent terms:
[tex]r=\frac{a_{n+1}}{a_n}[/tex][tex]\frac{-18}{6}=-3,\: \quad \frac{54}{-18}=-3,\: \quad \frac{-162}{54}=-3[/tex][tex]\mathrm{The\: ratio\: of\: all\: the\: adjacent\: terms\: is\: the\: same\: and\: equal\: to}[/tex][tex]r=-3[/tex][tex]a_n=a_1r^{\mleft\{n-1\mright\}}[/tex][tex]\mathrm{For\: }a_1=6,\: r=-3[/tex][tex]a_n=6\mleft(-3\mright)^{n-1}[/tex]Now, plugging in the term 5 into the equation:
[tex]a_n=6\cdot(-3)^{5-1}[/tex]Subtracting numbers:
[tex]a_n=6\cdot(-3)^4=6\cdot81=486[/tex]The 5th term is 486.
Now, we need to compute the 6th term:
[tex]a_n=6\cdot(-3)^{6-1}=6\cdot(-3)^5[/tex]Computing the numbers:
[tex]a_n=6\cdot(-243)[/tex]Multiplying the numbers:
[tex]a_n=-1,458[/tex]The term 6th is -1458
Adding the first 6 terms:
6 + (-18) + 54 + (-162) + 486 + (-1,458) = -1,092
In conclusion, the solution is -1,092