Let's call x, y, and z the $10, $1, and $4.50 water respectively.
[tex]x+y+z=300[/tex]Because the total is 300 gallons.
"She must use twice as much of the $4.50 water as the $1.00 water" we express it like this
[tex]z=2y[/tex]We combine equations
[tex]\begin{gathered} x+y+2y=300 \\ x+3y=300 \end{gathered}[/tex]We know that we have to mix all three grades of water for $6.
[tex]10x+y+4.5z=6(300)[/tex]We combine the second equation with the last one
[tex]\begin{gathered} 10x+y+4.5(2y)=1800 \\ 10x+y+9y=1800 \\ 10x+10y=1800 \\ 10(x+y)=1800 \\ x+y=\frac{1800}{10} \\ x+y=180 \end{gathered}[/tex]Now, we combine the last question with x+3y = 300 to make a system
[tex]\begin{cases}x+3y=300 \\ x+y=180\end{cases}[/tex]We multiply the second equation by -1, then we combine the equations to solve for y
[tex]\begin{gathered} \begin{cases}x+3y=300 \\ -x-y=-180\end{cases}\rightarrow x-x+3y-y=300-180 \\ 2y=120 \\ y=\frac{120}{2} \\ y=60 \end{gathered}[/tex]Then,
[tex]\begin{gathered} x+y=180 \\ x+60=180 \\ x=180-60 \\ x=120 \end{gathered}[/tex]At last,
[tex]\begin{gathered} x+y+z=300 \\ 120+60+z=300 \\ z=300-180 \\ z=120 \end{gathered}[/tex]