Given the model of the Exponential Regression:
[tex]y=174.4(0.987)^x[/tex]
By definition:
[tex]Residual=Observed\text{ }y\text{ }value-Predicted\text{ }y\text{ }value[/tex]
You can see in the table the observed y-values (the temperature in Fahrenheit)
In order to find the Predicted y-values, you need to substitute all the x-values given in the table (the time in minutes) into the equation and then evaluate. You get:
[tex]y=174.4(0.987)^5\approx163.35[/tex][tex]y=174.4(0.987)^8\approx157.07[/tex][tex]y=174.4(0.987)^{11}\approx151.02[/tex][tex]y=174.4(0.987)^{15}\approx143.32[/tex][tex]y=174.4(0.987)^{18}\approx137.80[/tex][tex]y=174.4(0.987)^{22}\approx130.77[/tex][tex]y=174.4(0.987)^{25}\approx125.74[/tex][tex]y=174.4(0.987)^{29}\approx119.33[/tex][tex]y=174.4(0.987)^{32}\approx114.73[/tex][tex]y=174.4(0.987)^{35}\approx110.32[/tex]
Now you have these points:
[tex](5,163.35),(8,157.07),(11,151.02),(15.143.32)(18,137.800),(22,130.77),(25,125.74),(29,119.33),(32,114.73),(35,110.32)[/tex]
Therefore, you can plot them on the Coordinate Plane:
By definition, when the residual plot shows a pattern, a non-linear regression model is appropriate for the data. Therefore, the Exponential Regression Model is a good fit.
Hence, the answer is:
- Residual Plot:
- First option.