We have the following right triangle:
then, using the cosine function, we have the following:
[tex]\begin{gathered} \cos (78)=\frac{\text{adjacent side}}{hypotenuse}=\frac{MK}{35} \\ \Rightarrow\cos (78)=\frac{MK}{35} \end{gathered}[/tex]solving for MK, we get:
[tex]\begin{gathered} \frac{MK}{35}=\cos (78) \\ \Rightarrow MK=35\cdot\cos (78)=7.3 \\ MK=7.3ft \end{gathered}[/tex]therefore, the length of MK is 7.3ft