3. Find the value of x to the nearest tenth. ++++++++++ 7

Given a right angle triangle with the following dimensions
[tex]\begin{gathered} \text{Opposite}=x\text{ units} \\ \text{Adjacent}=7\text{ units} \\ \theta=48\degree^{} \end{gathered}[/tex]To find the value of x, we use SOHCAHTOA,
Since, we have the dimensions of the opposite and the adjacent side, we use tan, i.e
[tex]\tan \theta=\frac{Opposite}{Adjacent}[/tex]Substitute the values into the formula above
[tex]\begin{gathered} \tan \theta=\frac{Opposite}{Adjacent} \\ \tan \theta=\frac{x}{7} \\ \text{Crossmultiply} \\ x=7\times\tan 48\degree \\ x=7\times1.1106 \\ x=7.7742\text{ units} \\ x=7.8\text{ (nearest tenth)} \end{gathered}[/tex]Hence, the value of x is 7.8 units (nearest tenth)