Respuesta :

Given a right angle triangle with the following dimensions

[tex]\begin{gathered} \text{Opposite}=x\text{ units} \\ \text{Adjacent}=7\text{ units} \\ \theta=48\degree^{} \end{gathered}[/tex]

To find the value of x, we use SOHCAHTOA,

Since, we have the dimensions of the opposite and the adjacent side, we use tan, i.e

[tex]\tan \theta=\frac{Opposite}{Adjacent}[/tex]

Substitute the values into the formula above

[tex]\begin{gathered} \tan \theta=\frac{Opposite}{Adjacent} \\ \tan \theta=\frac{x}{7} \\ \text{Crossmultiply} \\ x=7\times\tan 48\degree \\ x=7\times1.1106 \\ x=7.7742\text{ units} \\ x=7.8\text{ (nearest tenth)} \end{gathered}[/tex]

Hence, the value of x is 7.8 units (nearest tenth)

RELAXING NOICE
Relax