Column A:
[tex]4x-30\ge-3x+12[/tex]
The solution will be as following :
[tex]\begin{gathered} 4x+3x\ge12+30 \\ 7x\ge42 \\ \frac{7x}{7}\ge\frac{42}{7} \\ \\ x\ge6 \end{gathered}[/tex]
Column B:
[tex]\frac{1}{2}x+3<-2x-6[/tex]
The solution will be as following :
[tex]\begin{gathered} \frac{1}{2}x+2x<-6-3 \\ 2\frac{1}{2}x<-9 \\ \frac{5}{2}x<-9 \\ \\ x<-9\cdot\frac{2}{5} \\ \\ x<-3.6 \end{gathered}[/tex]
Compare the quantities in Column A and Column B
so,
[tex]x\ge6\text{ and x < -3.6}[/tex]
So, the answer is option A) The quantity in Column A is greater.