To answer this question, we're going to use some important properties of the Pascal's triangle.
1) If we number the rows starting at zero, then the kth row has k + 1 elements.
2) If we number the elements on the kth row starting with zero, then the mth element of row k is given by
[tex]\begin{pmatrix}{k} \\ {m}\end{pmatrix}=\frac{k!}{m!(k-m)!}[/tex]Using those two properties, we can answer our question.
We want to know the numbers that will fill in the eighth row, this means our k = 8.
From the first property, we know that we have 9 elements on this row, and they are given by
[tex]\begin{pmatrix}{8} \\ {m}\end{pmatrix}=\frac{8!}{m!(8-m)!},m=0,1,2,\ldots,8[/tex]Plugging each m value on this equation, we have
[tex]\begin{gathered} \begin{pmatrix}{8} \\ {0}\end{pmatrix}=\frac{8!}{0!(8-0)!}=\frac{8!}{8!}=1 \\ \begin{pmatrix}{8} \\ {1}\end{pmatrix}=\frac{8!}{1!(8-1)!}=\frac{8!}{7!}=8 \\ \begin{pmatrix}{8} \\ {2}\end{pmatrix}=\frac{8!}{2!(8-2)!}=\frac{8\cdot7}{2}=28 \\ \begin{pmatrix}{8} \\ {3}\end{pmatrix}=56 \\ \begin{pmatrix}{8} \\ {4}\end{pmatrix}=70 \\ \begin{pmatrix}{8} \\ {5}\end{pmatrix}=56 \\ \begin{pmatrix}{8} \\ {6}\end{pmatrix}=28 \\ \begin{pmatrix}{8} \\ {7}\end{pmatrix}=8 \\ \begin{pmatrix}{8} \\ {8}\end{pmatrix}=1 \end{gathered}[/tex]And those are the values on the eighth row.