Given that the Sum of three consecutive integers is:
[tex]99[/tex]Let be:
- The first integer:
[tex]n[/tex]- The second integer:
[tex]n+1[/tex]- And the third integer:
[tex]n+2[/tex]By definition, the Sum is the result of an Addition.
Therefore, in this case, you can set up the following equation:
[tex]n+(n+1)+(n+2)=99[/tex]When you solve for "n", you get:
[tex]n+n+1+n+2=99[/tex][tex]3n+3=99[/tex][tex]3n=99-3[/tex][tex]3n=96[/tex][tex]\begin{gathered} n=\frac{96}{3} \\ \\ n=32 \end{gathered}[/tex]Now that you know that first integer, you can determine that the other consecutive integers are:
[tex]n+1=32+1=33[/tex][tex]n+2=32+2=34[/tex]Hence, the answer is:
[tex]\begin{gathered} 32 \\ 33 \\ 34 \end{gathered}[/tex]