Respuesta :

Given that the Sum of three consecutive integers is:

[tex]99[/tex]

Let be:

- The first integer:

[tex]n[/tex]

- The second integer:

[tex]n+1[/tex]

- And the third integer:

[tex]n+2[/tex]

By definition, the Sum is the result of an Addition.

Therefore, in this case, you can set up the following equation:

[tex]n+(n+1)+(n+2)=99[/tex]

When you solve for "n", you get:

[tex]n+n+1+n+2=99[/tex][tex]3n+3=99[/tex][tex]3n=99-3[/tex][tex]3n=96[/tex][tex]\begin{gathered} n=\frac{96}{3} \\ \\ n=32 \end{gathered}[/tex]

Now that you know that first integer, you can determine that the other consecutive integers are:

[tex]n+1=32+1=33[/tex][tex]n+2=32+2=34[/tex]

Hence, the answer is:

[tex]\begin{gathered} 32 \\ 33 \\ 34 \end{gathered}[/tex]

RELAXING NOICE
Relax