Given:
Diffusion constant = 1.71 x 10⁻⁶ m²/s.
Let's find the average distance a perfume molecule moves in air.
Apply the formula:
[tex]x_{rms}=\sqrt{2Dt}[/tex]Where:
D is the diffusion constant
t is the time = 1 second.
Thus, we have:
[tex]\begin{gathered} x_{rms}=\sqrt{2*1.71\times10^{-6}*1.00} \\ \\ x_{rms}=\sqrt{3.42*10^{-6}} \\ \\ x_{rms}=1.85\times10^{-3\text{ }}m \end{gathered}[/tex]Therefore, the average distance a perfume molecule moves in one second in air is 1.85 x 10⁻³ m
ANSWER:
1.85 x 10⁻³ m