Write the trigonometric form of the complex number. (Round your angles to two decimal places. Let 0 ≤ < 2.)

Given a complex number z:
[tex]z=a+bi[/tex]We can write this number in trigonometric form, using:
[tex]\begin{gathered} z=r(\cos\theta+i\sin\theta) \\ . \\ a=r\cos\theta \\ . \\ b=r\sin\theta \\ . \\ r=\sqrt{a^2+b^2} \end{gathered}[/tex]In this case, we are given:
[tex]z=-8+2i[/tex]We need to find r and θ. We know:
· a = -8
· b = 2
Thus:
[tex]r=\sqrt{(-8)^2+2^2}=\sqrt{64+4}=\sqrt{68}=2\sqrt{17}[/tex]And now, we can find θ:
[tex]-8=2\sqrt{17}\cos\theta[/tex]And solve:
[tex]\begin{gathered} \cos\theta=-\frac{8}{2\sqrt{17}} \\ . \\ \theta=\cos^{-1}(-\frac{4\sqrt{17}}{17})\approx2.89661 \end{gathered}[/tex]Now we can write the number in trigonometric form:
[tex]z=2\sqrt{17}(\cos(2.9)+i\sin(2.9))[/tex]