Respuesta :

Given a complex number z:

[tex]z=a+bi[/tex]

We can write this number in trigonometric form, using:

[tex]\begin{gathered} z=r(\cos\theta+i\sin\theta) \\ . \\ a=r\cos\theta \\ . \\ b=r\sin\theta \\ . \\ r=\sqrt{a^2+b^2} \end{gathered}[/tex]

In this case, we are given:

[tex]z=-8+2i[/tex]

We need to find r and θ. We know:

· a = -8

· b = 2

Thus:

[tex]r=\sqrt{(-8)^2+2^2}=\sqrt{64+4}=\sqrt{68}=2\sqrt{17}[/tex]

And now, we can find θ:

[tex]-8=2\sqrt{17}\cos\theta[/tex]

And solve:

[tex]\begin{gathered} \cos\theta=-\frac{8}{2\sqrt{17}} \\ . \\ \theta=\cos^{-1}(-\frac{4\sqrt{17}}{17})\approx2.89661 \end{gathered}[/tex]

Now we can write the number in trigonometric form:

[tex]z=2\sqrt{17}(\cos(2.9)+i\sin(2.9))[/tex]

ACCESS MORE
EDU ACCESS