Answer
[tex]\frac{2m^2}{3n^7}[/tex]Explanation
Given monomials:
[tex]\frac{20m^5n^2}{30m^3n^9}[/tex]Using division law of indices:
[tex]\begin{gathered} \frac{20}{30}\times\frac{m^5}{m^3}\times\frac{n^2}{n^9}=\frac{2}{3}\times m^{5-3}\times n^{2-9} \\ =\frac{2}{3}\times m^2\times n^{-7} \\ \end{gathered}[/tex]Now, using the negative exponent law of indices, we have:
[tex]\frac{2}{3}\times m^2\times\frac{1}{n^7}=\frac{2\times m^2\times1}{3\times n^7}=\frac{2m^2}{3n^7}[/tex]