Answer:
x-2y=-6.
Explanation:
Given a line with a slope of 1/2 that passes through the point (2,4):
[tex]\begin{gathered} m=\frac{1}{2} \\ (x_1,y_1)=(2,4) \end{gathered}[/tex]Substitute these into the point-slope form of the equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]This gives:
[tex]\begin{gathered} y-4=\frac{1}{2}(x-2) \\ y-4=\frac{1}{2}x-\frac{1}{2}(2) \\ y-4=\frac{1}{2}x-1 \end{gathered}[/tex]We can simplify further:
[tex]\begin{gathered} y=\frac{1}{2}x-1+4 \\ y=\frac{1}{2}x+3 \\ \implies y=\frac{x+6}{2} \\ 2y=x+6 \\ x-2y=-6 \end{gathered}[/tex]The equation of the line is x-2y=-6.