Graph the following function by considering how the function x^2 has been shifted, reflected, stretched or compressed.

Given the quadratic function g(x) defined as:
[tex]g(x)=-\frac{(x-2)^2}{2}-2[/tex]We can go from the function f(x) = x² to g(x) making the transformations:
1) A reflection about the x-axis:
[tex]f(x)\to-f(x)[/tex]2) A horizontal dilation by a factor of 1/2:
[tex]f(x)\to\frac{1}{2}f(x)[/tex]3) A shift of 2 units down:
[tex]f(x)\to f(x)-2[/tex]4) A shift of 2 units right:
[tex]f(x)\to f(x-2)[/tex]Combining all these transformations:
[tex]f(x)\to-\frac{f(x-2)}{2}-2=-\frac{(x-2)^2}{2}-2=g(x)[/tex]Then, the graphs of f(x) (red) and g(x) (green) are: