Respuesta :

Given the quadratic function g(x) defined as:

[tex]g(x)=-\frac{(x-2)^2}{2}-2[/tex]

We can go from the function f(x) = x² to g(x) making the transformations:

1) A reflection about the x-axis:

[tex]f(x)\to-f(x)[/tex]

2) A horizontal dilation by a factor of 1/2:

[tex]f(x)\to\frac{1}{2}f(x)[/tex]

3) A shift of 2 units down:

[tex]f(x)\to f(x)-2[/tex]

4) A shift of 2 units right:

[tex]f(x)\to f(x-2)[/tex]

Combining all these transformations:

[tex]f(x)\to-\frac{f(x-2)}{2}-2=-\frac{(x-2)^2}{2}-2=g(x)[/tex]

Then, the graphs of f(x) (red) and g(x) (green) are:

Ver imagen AdisU80070
ACCESS MORE
EDU ACCESS
Universidad de Mexico