Find the perimeter of the triangle to the nearest tenth of a meter.

You can identify that the triangle shown in the picture is a Right triangle.
You can use the following Trigonometric Identity:
[tex]\tan \alpha=\frac{opposite}{adjacent}[/tex]In this case:
[tex]\begin{gathered} \alpha=30\degree \\ opposite=5 \\ adjacent=x \end{gathered}[/tex]See the picture below:
Substitute values into
[tex]\tan \alpha=\frac{opposite}{adjacent}[/tex]And solve for "x":
[tex]\begin{gathered} \tan (30\degree)=\frac{5}{x} \\ \\ x\tan (30\degree)=5 \\ \\ x=\frac{5}{\tan(30\degree)} \\ \\ x=5\sqrt[]{3} \end{gathered}[/tex]To find the length of the hypotenuse, you can use the Pythagorean theorem:
[tex]a^2=b^2+c^2[/tex]Where "a" is the hypotenuse and "b" and "c" are the legs of the Right triangle.
In this case:
[tex]\begin{gathered} a=y \\ b=5 \\ c=5\sqrt[]{3} \end{gathered}[/tex]Substituting values into the equation and solving for the hypotenuse, you get that this is:
[tex]\begin{gathered} y^2=(5)^2+(5\sqrt[]{3})^2 \\ y=25+25(3) \\ y=\sqrt[]{100} \\ y=10 \end{gathered}[/tex]The perimeter of a triangle can be found by adding the lengths of its sides. Then, the perimeter of this triangle rounded to the nearest tenth, is:
[tex]\begin{gathered} P=5m+5\sqrt[]{3}m+10m \\ P=23.66m \\ P\approx23.7m \end{gathered}[/tex]The answer is: Option C.