(b) In the diagram below, ABC is an isos-celes triangle. /AB/=/AC/= 5 cm and/BC/= 8 cm. Calculate correct to thenearest degree, ZBAC.AB5 cm8 cmX 5 cmC


Step 1
Given;
Step 2
From the triangle;
Using cosine rule;
[tex]c^2=a^2+b^2-2(a)(b)cos(C)[/tex][tex]\begin{gathered} 8^2=5^2+5^2-2(5)(5)cos(y) \\ m\angle BAC=y \\ 64-50=-50(cos(y)) \\ \\ \end{gathered}[/tex][tex]\begin{gathered} \frac{14}{-50}=cosy \\ y\approx106^o \end{gathered}[/tex]Answer;
[tex]m\angle BAC\approx106^o\text{ to the nearest degree}[/tex]