If mAB = 72 degree, find the area of shaded sector AOB, in terms of pi

If mAB = 72 degrees, then the central angle O will have the same measure.
Now, to find the sector area of a circle, we use the next equation:
[tex]\frac{central\text{ angle}}{360}=\frac{sector}{\pi r^2}[/tex]Where :
r = radius = 10
O = Central angle = 72 degrees.
Solve for the area of the sector AS:
[tex]AS=\frac{central\text{ angle}}{360}\ast\pi r^2[/tex]Replacing:
[tex]AS=\frac{72}{360}\ast\pi(10)^2[/tex]Solve it:
[tex]AS=20\pi[/tex]Hence, the area of the vector is 20π.