we have the expression
[tex]\frac{x^2-2x-24}{x^2+7x+12}[/tex]step 1
Simplify the numerator
[tex]x^2-2x-24[/tex]Solve the quadratic equation, using the formula
a=1
b=-2
c=-24
substitute
[tex]x=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(1)(-24)}}{2(1)}[/tex][tex]\begin{gathered} x=\frac{2\pm\sqrt[]{100}}{2} \\ \\ x=\frac{2\pm10}{2} \end{gathered}[/tex]the values of x are
x=6 and x=-4
therefore
[tex]x^2-2x-24=(x+4)(x-6)[/tex]step 2
Simplify the denominator
[tex]x^2+7x+12[/tex]Solve the quadratic equation, using the formula
a=1
b=7
c=12
substitute
[tex]x=\frac{-7\pm\sqrt[]{7^2-4(1)(12)}}{2(1)}[/tex][tex]x=\frac{-7\pm1}{2}[/tex]the values of x are
x=-3 and x=-4
therefore
[tex]x^2+7x+12=(x+3)(x+4)[/tex]step 3
substitute the given values in the original expression
[tex]\frac{(x+4)(x-6)}{(x+3)(x+4)}[/tex]simplify
[tex]\frac{x-6}{x+3}[/tex]