Respuesta :

we have the expression

[tex]\frac{x^2-2x-24}{x^2+7x+12}[/tex]

step 1

Simplify the numerator

[tex]x^2-2x-24[/tex]

Solve the quadratic equation, using the formula

a=1

b=-2

c=-24

substitute

[tex]x=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(1)(-24)}}{2(1)}[/tex][tex]\begin{gathered} x=\frac{2\pm\sqrt[]{100}}{2} \\ \\ x=\frac{2\pm10}{2} \end{gathered}[/tex]

the values of x are

x=6 and x=-4

therefore

[tex]x^2-2x-24=(x+4)(x-6)[/tex]

step 2

Simplify the denominator

[tex]x^2+7x+12[/tex]

Solve the quadratic equation, using the formula

a=1

b=7

c=12

substitute

[tex]x=\frac{-7\pm\sqrt[]{7^2-4(1)(12)}}{2(1)}[/tex][tex]x=\frac{-7\pm1}{2}[/tex]

the values of x are

x=-3 and x=-4

therefore

[tex]x^2+7x+12=(x+3)(x+4)[/tex]

step 3

substitute the given values in the original expression

[tex]\frac{(x+4)(x-6)}{(x+3)(x+4)}[/tex]

simplify

[tex]\frac{x-6}{x+3}[/tex]

ACCESS MORE
EDU ACCESS