Respuesta :

Explanation

Let's call the given matrix A and B. Therefore,

[tex]A=\begin{bmatrix}{-6} & {8} & {2} & {-3} \\ {4} & {-5} & {10} & {7}\end{bmatrix}\text{ and B=}\begin{bmatrix}{-7} & {8} & {10} & {7} \\ {6} & {-4} & {-9} & {5}\end{bmatrix}[/tex]

Therefore,

[tex]A-B\text{ ex}ist\text{ because both matrix are conformable( have the same dimensions)}[/tex]

We will subtract the matrix element by element

[tex]\begin{gathered} A-B=\begin{bmatrix}{-6-(-7)} & {8-8} & {2-10} & {-3-7} \\ {4-6} & {-5-(-4)} & {10-(-9)} & {7-5}\end{bmatrix} \\ A-B=\begin{bmatrix}{1} & {0} & {-8} & {-10} \\ {-2} & {-1} & {19} & {2}\end{bmatrix} \end{gathered}[/tex]

Answer:

[tex]A-B=\begin{bmatrix}{1} & {0} & {-8} & {-10} \\ {-2} & {-1} & {19} & {2}\end{bmatrix}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico