Given:
Nuts = $2.50
Cereal mixture = $1
Find -: How much each should be added.
Sol:
Obtain = 60 kg.
Let nuts = x kg
Cereal = y kg
To obtain 60 kg means:
[tex]\begin{gathered} x+y=60 \\ \\ y=60-x \end{gathered}[/tex]Pricing at $1.90 per kg means:
[tex]\begin{gathered} x(2.50)+y(1)=60(1.90) \\ \\ 2.5x+y=114 \end{gathered}[/tex]Put the value of "y" then:
[tex]\begin{gathered} 2.5x+60-x=114 \\ \\ 1.5x=114-60 \\ \\ 1.5x=54 \\ \\ x=\frac{54}{1.5} \\ \\ x=36 \end{gathered}[/tex]Then the value of "y" is:
[tex]\begin{gathered} y=60-x \\ \\ y=60-36 \\ \\ y=24 \end{gathered}[/tex]So,
In the mixture 36 kg of nuts and 24 kg of cereal.