Given:
The parameters for circle A:
diameter = 9 inches
circumference = 28.26 inches
area = 63.585 square inches
The parameters for circle B:
diameter = 5 inches
circumference = 15.70 inches
area = 19.625 square inches
The formulas for the area and circumference of a circle:
[tex]\begin{gathered} \text{Circumference of a circle = 2}\pi r \\ \text{Area of a circle = }\pi r^2 \end{gathered}[/tex]Part A
Using the formulas, we can solve for pi for each cicle:
Circle A:
[tex]\begin{gathered} 2\pi r\text{ = 28.26} \\ \pi d\text{ = 28.26} \\ \pi\text{ }\times\text{ 9 = 28.26} \\ \text{Divide both sides by 9} \\ \pi\text{ = 3.14} \end{gathered}[/tex]Circle B:
[tex]\begin{gathered} 2\pi r\text{ = }15.70 \\ \pi d\text{ = 15.70} \\ \pi\text{ }\times\text{ 5 = 15.70} \\ \text{Divide both sides by 5} \\ \pi\text{ = 3.14} \end{gathered}[/tex]Part B:
Circle A:
[tex]\begin{gathered} \pi r^2\text{ = 63.585} \\ \pi\text{ }\times(\frac{d}{2})^2\text{ = 63.585} \\ \pi\text{ }\times20.25\text{ = 63.585} \\ \pi\text{ = 3.14} \end{gathered}[/tex]Circle B:
[tex]\begin{gathered} \pi r^2\text{ = }19.625 \\ \pi\text{ }\times(\frac{d}{2})^2\text{ = 19.625} \\ \pi\text{ = }\frac{19.625}{6.25} \\ =\text{ 3.14} \end{gathered}[/tex]