We can draw the isosceles trapezoid as follows:
Then, the area of this isosceles trapezoid will be:
[tex]A_{\text{trapezoid}}=\frac{1}{2}h(b_1+b_2)[/tex]However, we need to find the height of the isosceles trapezoid, h, using the Pythagorean Theorem as follows:
Therefore, we can find, h, as follows:
[tex]5^2=1^2+h^2\Rightarrow h^2=5^2-1^2\Rightarrow h^2=25-1\Rightarrow h^2=24[/tex][tex]h=\sqrt[]{24}\Rightarrow24=2^2\cdot2\cdot3\Rightarrow h=\sqrt[]{2^2\cdot6}\Rightarrow h=2\cdot\sqrt[]{6}[/tex]Then, the area of the isosceles trapezoid using the formula above as follows:
[tex]A_{\text{trapezoid}}=\frac{1}{2}h(b_1+b_2)\Rightarrow\begin{cases}h=2\cdot\sqrt[]{6} \\ b_1=6 \\ b_2=8\end{cases}[/tex]Then, we have:
[tex]A_{\text{trapezoid}}=\frac{1}{2}2\cdot\sqrt[]{6}(6+8)=14\cdot\sqrt[]{6}[/tex]In summary, the area of an isosceles trapezoid is (in square units):
[tex]A_{\text{trapezoid}}=14\cdot\sqrt[]{6}[/tex]