Respuesta :

Answer:

68

Explanation:

We start with the mode:

[tex]\text{Mode}=l+\frac{(f_1-f_0)\times h}{(2f_1-f_0-f_2)}[/tex]

Where the terms are defined as follows:

[tex]\begin{gathered} l=\text{lower limit of the modal class} \\ f_1=\text{frequency of the modal class} \\ f_0=\text{frequency of the class before the modal class} \\ f_2=\text{frequency of the class after the modal class} \\ h=\text{size of the class interval} \end{gathered}[/tex]

From the table, the modal class is 65-69.

Therefore:

[tex]\begin{gathered} l=\text{6}5 \\ f_1=\text{1}9 \\ f_0=\text{1}0 \\ f_2=\text{1}3 \\ h=\text{5} \end{gathered}[/tex]

We substitute into the formula:

[tex]\begin{gathered} \text{Mode}=65+\frac{(19-10)\times5}{(2\times19-10-13)} \\ =65+\frac{9\times5}{15} \\ =65+\frac{45}{15} \\ =65+3 \\ =68 \end{gathered}[/tex]

The mode of the given data is 68.

RELAXING NOICE
Relax